If it's not what You are looking for type in the equation solver your own equation and let us solve it.
432=3u^2
We move all terms to the left:
432-(3u^2)=0
a = -3; b = 0; c = +432;
Δ = b2-4ac
Δ = 02-4·(-3)·432
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*-3}=\frac{-72}{-6} =+12 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*-3}=\frac{72}{-6} =-12 $
| 8x-10x=1x-45 | | 22/x-4=11/x | | 11x-6x+5=4 | | 4x–3=5x–7 | | 10=10y-6 | | 9x^2+21x-81=0 | | 8x-3=4(2x-1) | | 11^(r+2)+8=78 | | 8=4y-9 | | (3x+8)(3x-1)=0 | | 3(x-15)+13=2(x+3) | | -5+0.25y=-9 | | 3x-5=×-1;2 | | 13x+4=5x+4 | | 8x+92=-12 | | x+(x/2)=89 | | 0.75x=0.25x-4.75 | | -5+0.50k=6 | | x+(x/2)=178 | | 58=2x+20 | | 14t−10t=16 | | 20=2x-8;6 | | 2+z×−13=3 | | -5+1/2k=6 | | 2y=12-5-2 | | 4a2=2a+3 | | (2x+1)(x^2-7)=0 | | 8s=-15s-(-19) | | (2x+1)(x^2-7)=x | | p-4=5p=-9+p | | 3r2+1=4r | | y=(5/4)-4 |